

HIGH VOLTAGE POLYTERM® CERAMIC CAPACITORS

Standard MLCCs are prone to cracking due to mishandling, depanelization, and board flexing. In response to customer requests for higher resistance to mechanical stress, and as a result of continuous efforts to improve our products, JDI has introduced PolyTerm® termination ceramic capacitors to meet those customer requirements for increased resistance to flexure cracking.

PolyTerm® is a conductive epoxy termination material loaded with silver, allowing it to absorb much more bending force than standard termination material. After termination PolyTerm® parts are nickel and tin plated using the same process as standard parts. There is no effect on solderability or capability to withstand the soldering process.

PolyTerm® capacitors are ideal for use in telecom, power supply, inverter, and modem applications.

FEATURES

- Lead Free Terminations 100% Sn, Final Termination
- · Electrodes: Pd/Ag
- Core Termination: PolyTerm[®]
- · Middle Barrier Layer: Ni

- External Termination Layer: 100% Sn
- · NP0 and X7R temperature coefficient
- Highly reliable performance
- · Industry standard case sizes

How to Order

Ν C F 302 R29 1R0 4 Ε MARKING **VOLTAGE** CASE SIZE DIELECTRIC CAPACITANCE **TOLERANCE TERMINATION** TAPE CODE R15 = 0805 $B = \pm 0.1 pF$ E = 7" Plastic 1st two digits are N = NP01st two digits are F = PolyTerm® 4 = Unmarkedsignificant; third R18 = 1206W = X7Rsignificant; third $C = \pm 0.25 \text{ pF}$ T = Paper 7" reel digit denotes S41 = 1210digit denotes $D = \pm 0.5 pF$ number of zeros to S43 = 1812number of zeros to $J = \pm 5\%$ $K = \pm 10\%$ follow S47 = 2220follow eg: 101 = 100 pFSafety Certified capacitor p/ns end with S48 = 2225 $M = \pm 20\%$ eg: 302 = 3000 VDCW S49 = 1825"-***-SC" and are rated at 250 Volts AC. R denotes decimal eg: 1R0 = 1.0 pFExample Part Number: 302R29N1R0CF4E

15191 Bledsoe Street, Sylmar, California 91342 • (818) 364-9800• FAX (818) 364-6100

HIGH VOLTAGE POLYTERM® AVAILABILITY - NPO DIELECTRIC

SIZE	(0805				1206	5		1210					1808										1812							
Voltage	2000	630V	1000V	5000	9300	1000V	2000V	3000V	2007	630V	1000V	2000V	3000V	5000	630V	1000V	2000V	3000V	4000V	5000V	X2Y3	X1Y2	2000	630V	1000V	2000V	3000V	4000V	5000V	Y2	
1.0 pF	İ																														
10 pF																															
12 pF																															
15 pF																															
18 pF																															
22 pF				•	•	•																									
27 pF																															
33 pF				•	•	•	•														•	•								•	
39 pF																															
47 pF																															
56 pF																															
68 pF																															
82 pF																															
100 pF	•																				•										
120 pF																															
150 pF																					•										
180 pF																															
220 pF				•																											
270 pF																															
330 pF																															
390 pF																															
470 pF																															
560 pF																															
680 pF										٠	•																				
820 pF	╙																														
1.0 nF				٠																											
1.2 nF																															
1.5 nF																															
1.8 nF	L																														
2.2 nF	L													٠	•	٠															
2.7 nF																															
3.3 nF	$oxed{oxed}$																														
3.9 nF																															
4.7 nF	L																														
5.6 nF	L																														
6.8 nF	$oxed{oxed}$																														
8.2 nF																															
10 nF																															

Note: Part values marked with "•" have better availability and shorter lead times.

www. johans on dielectrics. com

HIGH VOLTAGE POLYTERM® AVAILABILITY - NPO DIELECTRIC

SIZE				1825							2220)		2225								
Voltage	500V	630V	1000V	2000V	3000V	4000V	5000V	2000	630V	1000V	2000V	3000V	4000V	5000V	2000	630V	1000V	2000V	3000V	4000V	5000V	
1.0 pF																						
10 pF																						
15 pF	ĺ																					
18 pF																						
22 pF																						
27 pF																						
33 pF																						
47 pF																						
56 pF																						
68 pF																						
82 pF																						
100 pF																						
150 pF																						
180 pF																						
220 pF																						
270 pF																						
330 pF																						
470 pF																						
560 pF																						
680 pF																						
820 pF	-																					
1.0 nF																						
1.2 nF																						
1.5 nF																						
1.8 nF	-																					
2.2 nF																						
2.7 nF 3.3 nF																						
4.7 nF																						
4./ nF 5.6 nF														\vdash								
6.8 nF																						
8.2 nF																						
10 nF														$\vdash \vdash$							\vdash	
12 nF														\vdash								
15 nF																						
18 nF																						
22 nF		\neg												\vdash								
27 nF	\dashv	\neg																				
33 nF	\dashv													\vdash								
39 nF																						
47 nF	\dashv													\vdash								

Note: Part values marked with '' have better availability and shorter lead times.

HIGH VOLTAGE POLYTERM® AVAILABILITY - X7R DIELECTRIC

SIZE	(0805	;	1206							1210)		1808									1812									11
Voltage	2007	630V	1000V	5000	630V	1000V	2000V	3000V	2007	630V	1000V	2000V	3000V	2007	630V	1000V	2000V	3000V	4000V	5000V	X2Y3	X1Y2	5000	630V	1000V	2000V	3000V	4000V	5000V	X2Y3	Y2	
100 pF																															П	
150 pF																					•					•	•					
180 pF																																
220 pF						•	•																									
270 pF																																
330 pF																																
470 pF						•	٠														•					•						
560 pF																																
680 pF																						•										
820 pF																																
1.0 nF		•	•	•	•	•	٠		٠	٠	•	•		٠	•	٠	•	•			•					٠	٠					
1.2 nF																																
1.5 nF																																
1.8 nF																																
2.2 nF																																
2.7 nF																																
3.3 nF																																
3.9 nF																																
4.7 nF																																
5.6 nF																																
6.8 nF																																,
8.2 nF																																
10 nF														٠	•	•																
12 nF																																
15 nF																																
18 nF																																
22 nF																																
27 nF																															\square	,
33 nF																																,
39 nF																																,
47 nF																																,
56 nF																																,
68 nF																																,
82 nF																																,
100 nF																																,
120 nF																																,
150 nF																																,
180 nF																																

Note: Part values marked with "•" have better availability and shorter lead times.

www. johans on dielectrics. com

HIGH VOLTAGE POLYTERM® AVAILABILITY - X7R DIELECTRIC

SIZE				1825							22	20		2225								
Voltage	5000	630V	1000V	2000V	3000V	4000V	5000V	500V	630V	1000V	2000V	3000V	4000V	20000	X1Y2	500V	630V	1000V	2000V	3000V	4000V	5000V
270 pF																						
330 pF																						
470 pF																						
560 pF																						
680 pF																						
820 pF																						
1.0 nF																						
1.2 nF																						
1.5 nF																						
1.8 nF																						
2.2 nF															٠							
2.7 nF																						
3.3 nF																						
3.9 nF																						
4.7 nF																						
5.6 nF																						
6.8 nF																						
8.2 nF																						
10 nF																						
12 nF																						
15 nF																						
18 nF																						
22 nF																		٠	٠			
27 nF																						
33 nF																						
39 nF																						
47 nF																						
56 nF																						
68 nF																_						
82 nF												_										
100 nF												_										
120 nF												_			_							
150 nF																						
180 nF															_							\vdash
220 nF																						
270 nF						_						_			_							
330 nF																						
390 nF	_																					
470 nF																						
560 nF	<u> </u>					_			_			_			_			_				
680 nF																						

Note: Part values marked with '' have better availability and shorter lead times.

BEND TEST DESCRIPTION

The test board is designed so that the capacitance of the part can be measured while the part is being flexed (See figure 1). The capacitor is mounted at the center of the board. The testing equipment has a pressing block that is located so that it applies force at the center of the test board from below the part at a constant rate. Since the edges of the board are held in place by the support pins, this causes the board to flex. The amount of flex is measured in millimeters from the center of the board to the edge, please see "A" in Figure 2.

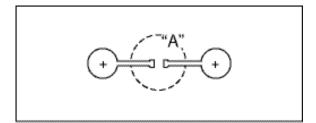


Figure 1

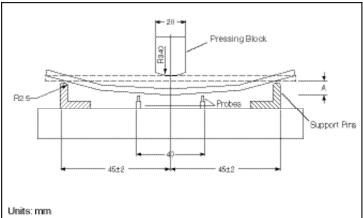
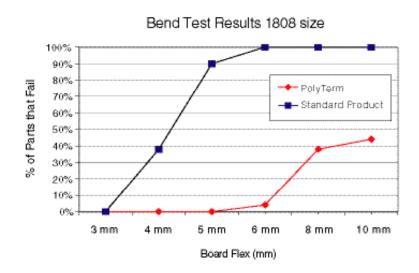



Figure 2

As the test board is flexed, the capacitance is constantly being measured by a capacitance meter which is connected to the test boards through capacitance probes. The capacitance is first measured at 0mm flex to establish the nominal value. The test board is then flexed to 1mm and held for at least on second, then the capacitance is measured, it is then flexed to 2mm, and so on up to 5mm. Any change in capacitance that exceeds 5% of the nominal value is considered a failure.

EXAMPLE OF CUSTOMER APPLICATION

Johanson Dielectrics receives a lot of requests from our customers to help them with cracking issues. One customer had cracking at a rate of 16% on 1206 size high voltage capacitors during their process. The top picture of Figure 3 shows a clear mechanical crack with a 45 degree angle at the termination solder pad interface. Repopulating the same board with PolyTerm® capacitors showed no cracking failures. The bottom picture of Figure 3 shows how PolyTerm® Capacitors solved these problems. No cracking was exhibited on any of the PolyTerm® capacitors during the customer assembly process.

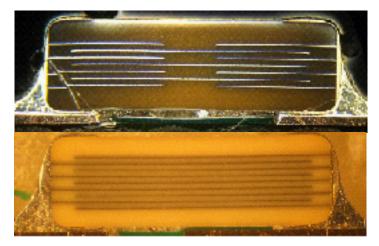


Figure 3